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OPTIMAL CONDITIONS OF DECELWATING THE ROTATIONAL MOTION 
OF A SYMMETRIC BODY 

*m 

B.A.Smoltnikov 

The problem of determining the optimum operating conditions 

of a torque-pmdiiciiig j e t  epgke dicrtrg deceleration of the  

angular velocity of a synanetric r ig id  body, executing origi-  

nal ly  f ree  motion in space about i t s  own center of inertia, 

i s  mathematically analyzed, B r a k i n g  within minimum time 

and braking a t  minimum consumption of the working medium 

are calculated, a t  controlling moments of l imited magnitude. 

Optimum phase t r a j ec to r i e s  of the Scds, f o r  both cases, a r e  

derived. 

The control of the rotary m t i o n  o f  a r ig id  body by m e a n s  of a system of 

torque-producing j e t  engines reduces t o  selecting the conditions of programing 

the  t h r u s t  of such engines in conformity with the conditions of a specific prob- 
,-- 

lem.  Below, we will examine the problem of deteImining the optimum operating 

conditions of engines during deceleration of the angular veloci ty  of a symmetric 

r ig id  body executing or iginal ly  free motion i n  space about i t s  own center of in- 

ertia, 

(neglecting consumption of the working medium) and braking a t  minimum consump- 

t i on  of working medium (neglecting time). 

We w i l l  exarmn e two regimes of deceleration: braking i n  minimum time 

Although, in individual par t icu lar  

cases, both these regimes may coincide, i n  the general case they are d i f fe ren t  

and thus require a separate investigation. 

* Numbers in the margin indicate  pagination i n  t h e  or iginal  foreign text. 
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We w i l l  assume i n  the analysis t ha t  the  jet  engines create controlling 

moments about the principal axes of i ne r t i a  of the body and t h a t ,  during con- 

sumption of the working medium, the moments of i n e r t i a  of the  body remin es- 

sen t ia l ly  constant ( j u s t  as the  directions of the  pr incipal  axes in the body). 

The controll ing moments are considered to be l imited in magnitude. 

A s  a re-& - '  01 LL ws ~ - - a f i ~ a f . i n n  ulrvu-,p------ it was found that, i n  the first case, a l l  

three controlling moments a c t  in reverse up t o  complete arrest of the body and, 

i n  the  second case, the transverse moments are included al ternately,  whereas the  

longitudinal moment (directed along the axis of symmetry of t h e  body) remains 

included up t o  complete elimination o f t h e  longitudinal component of the angular 

veloci ty  of the  body. 

the problem of eliminating precessional mtim of the body a t  constancy of i t s  

longitudinal velocity component. 

The construction of the phase t r a j ec to r i e s  is given i n  

1. Problem of Brak- i n  Minimum Time 

L e t  us  examine the  problem of finding the  optimum conditions of decelerat- 

ing a symmetric r ig id  body with respect t o  speed of response, 

definit iveness,  t ha t  t he  polar mment of i n e r t i a  of the  body C i s  greater than 

i t s  equatorialmoment of i n e r t i a  A, l e t  u s  write the  system of d i f f e ren t i a l  equa- 

t i ons  of  motion of the body i n  the form of 

Assuming, f o r  

C - A  
(E= T> 0) 

The l a w  of change of the controlling moments m,, m,, and m, ( re la t ive  t o  

the pr incipal  axes of i n e r t i a  x, y, z )  must be determined such t h a t  the angular 

veloci ty  components wx,  w y ,  w, (hereafter playing the mle of phase coordinates) 
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I will acquire the prescribed f i n a l  values in minimum time. I n  the case of com- 

I p le t e  braking of the body the f i n a l  values of the angular velocity should become 

equal t o  zero, whereas in the case of incomplete braking, f o r  example when only 

the precessional motion of the body i s  eliminated, only the  transverse com- 

ponents w,(T) and w,(T), where T i s  the time of completing the  process, should 

/726 

i 
become eq-a.l +& zem. L? vfew of the l i nea r i ty  of the controll ing moments rela- 

t i v e  t o  the derivatives i n  equations (1.1) it i s  convenient t o  use the  principle 

of t h e  maximum f o r  se t t ing  up the variational problem (Bib1.1). 

the function H of t h e  problem under consideration 

, 

Let us  set up 

and write the system of e p a t i o n s  f o r  the phase impulses 

P k =  - a H / d w k .  

I n  a developed form, it will be 

Without specifying the boundary conditions of the problem f o r  the time be- 

ing, l e t  us  construct the necessary integrals  of eq~~(1.1) a d  (1 .3)  and in- 

vest igate  the g e n e r a  character of the optirnal control conditions. For t h i s  

purpose, using the principle of the maximum , l e t  u s  es tabl ish the  optimum law of 

change of  the  controls mk. Since the function H depends l inear ly  on the con- 

t r o l s ,  it reaches i t s  maximum a t  values of controls equal t o  t h e i r  l i m i t i n g  

values; if the multiplier plr on 4 i s  posi t ive then the control will be a t  i t s  

upper limit; i f  this mult ipl ier  i s  negative,i t  w i l l  be a t  t h e  lower l i m i t .  

a t  pk rf 0 the optimum conditions of the change of moments mk will be on-ofv  and 

Thus, 

* If  pk 0, special  conditions a r i se  which may d i f f e r  from on-off. These con- 
d i t i o n s  are discussed in greater  d e t a i l  i n  Lee's work (Bibl.3). 
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w i l l  be determined by the following relations: 

If the  limits of the change of mk are  symmetric with respect t o  zero, then 

mk ( t )  = max I mk 1 s@ pk ( t )  * (1.5) 
I 

Here max i%i i s  the  peak value of t h e  k-th control. Hereafter in t h i s  
I 
I problem, mk will mean the quantity determinable by eq. (1.5). 

2. Integrations of the  Equations of Optimum Motion 

TO obtain the solution of the system of equations (1.1) and (1.3) in which 

the  controls are determined according to  eq~~(1.5) we will first i so l a t e  the 

following subsystem containing t'ne varfzbles px, py, and w, 

I According to  eq.(1.5), a t  each individual section of motion the  moment m ,  

is constant so t ha t  the solution of the l a s t  of the writ ten equations i n  the  

section w i l l  be 

(2.2) 0, = a z o  + C-'m,t . 1 
Thus, the  z-th component of the  angular velocity of the body under optimal 

braking conditions i s  a step function whose points of discontinuity according t o  

eq.(1.5), correspond t o  the  roots of the function ps. 

/727 L e t  us  introduce into the  calculation the complex function 

P = P x  4- iP, . , 1 (2.3) 

From the  first two equations of the system (2.1), we can obtain 

i p' - im, p = 0 , 
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The solution of this equation has the form 

t 

p = po exp (ie o, dt) 
0 

Taking into account eq. (2.2) we find 

f 

dt = ta + EOz0 t = A (0: - Or;) 
.I 
0 

Then. i n  place of eq. (2.5) we w i l l  have 

The expression f o r  the function p can also be represented i n  the form of 

where P and CY are real constants of integration determinable from the  boundary 

conditions of the problem. Hence, f o r  px and p, we have 

(2.9) I pX = P COS (hoz2 + a),  pY = P sin (h02 + a) . 
Multiplying t h e  second equation of the  system (1.1) by i and adding it t o  

the first, w e  obtain the  equation fo r  t h e  complex transverse angular velocity 

of the body: 

(2.10) 0. - ~EO,O = A-'m (o = ox + io,, rn = mx + inzy) . 

The general in tegra l  of  this equation according t o  Lurtye (BibL2) has the  

fonn 
t t t 

0 = [oo + + Sexp (- it? 1 o,dt) dtlexp ( i E ! U , d t )  * 

0 0 0 
(2.11) 

Taking in to  account expression (2.6) and then changing from the variable t 

t o  w,, an integration will yield 
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- i sgn h (S - So)] exp (Zhw2) ' 

i 
(8 = s (az vm. so= s (m*a vm) . ~ 

Here C(w) and S(w) are the Fresnel integrals ,  

The in tegra l  (2.12) can also be writieii as 

(2.12) 

(2.13) 

To determine the function p r ,  w e  can dispense with integration of the /728 
corresponding d i f f e ren t i a l  equation: this function enters the in tegra l  of the H 

problem which can be writ ten i n  the form of 

The right-hand side of this integral  remains a uni t  constant during t h e  en- 

t i re  braking process. 

trols mk stand as mult ipl iers  i n  front of the corresponding functions pk which 

vanish a t  the ins tan t  of switching the controls. 

T h i s  i s  explained by the  f ac t  t ha t  here the  relay con- 

3 .  Investigation of the Solution 

The in tegra ls  found f o r  the  phase coordinates and pulses contain a suffi- 

c ien t  number of constants f o r  solving the  two-point boundarg-value problem under 

consideration. As the three constants determining the i n i t i a l  position of the 

phase point i n  phase space we can select, f o r  example, the i n i t i a l  velocity 

values wx0, wlo , u ) ~ .  

example to obtain w,(T) = w,(T)  = w,(T) = 0 in the  case of complete braking) 

Then, t o  sa t i s fy  the end conditions of the problem ( fo r  

t h i s  leaves t h e  quant i t ies  P, CY, T, where T i s  the time of the braking process 

and P and CY a re  constants of integration entering in to  eqs.(2.9). It follows 
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from the requirement of continuity of px and py a t  the points of switching the  

moments mk t ha t  t h e i r  amplitude P and phase (Xw: + c y )  should also be continuous. 

This, in turn, indicates t ha t  the  constant P retains i t s  value during the entire 

braking process, whereas the constant cy changes stepwise by a magnitude *2\Xlw: 

a t  the points of switching the moment nq, remaining continuous a t  the  points of 

switching t h e  moments m, and m,. 

Taking i n to  account the expressions (2.9) fo r  p, and p, and also the  rela- 

t ions  (1.5), we can rewrite the integral  of eq.(2.15) as 

Ilence, t h e  obtained integral  determines on ly  the  modulus of the function pt 

but  not i t s  sign. 

eliminating w, and w, by m e a n s  of eq.(2.14). 

t ions  it i s  apparently more convenient t o  use eq.(3.1) directly.  

We can express lpzl also as an expl ic i t  Faxtierr w z ,  a f t e r  

However, f o r  numerical calcula- 

The l a w s  of switching the  moments m, and my are given by the  following ex- 

pre ssions : 

(3.2) ms = I mx1mu Sgn cos (haze + a),  my = I  mu l m a r  sgn sin (haze + a) . I I 

I n  this case, switching of the moments m, and m, occurs respectively a t  

points  determinable by the equations 

~ o ~ a  + a = nrc + V~Z,  ~ o ~ a  + a = M (n -0 ,  A i. 2, . . .) .I (3.3) 
I 
I 
I The phase t ra jectory of the system i s  determined by eq0(2.ll+), whose right- 

hand side changes stepwise a t  the points of switching the moments %, om,, m,. 

We w i l l  find the magnitude of this junxp a t  the  point of switching the  moment nq. 

B y  v i r tue  of the  continuity of w and w z ,  we then obtain /729 
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. 
A t  t h e  point of switching t h e  moment m a t  AD, we w i l l  have 

Here the subscript 1 denotes the value before switching and the  subscript 2, 

a f t e r  switching; D i s  a constant determinable by the in tegra l  (2.14). 

t ions  (3.4) and (3.5j permit j o 5 i i - i  t h e  ~ h z s e  tzajectory a t  the  points of 

switching the controls i n  a numerical calculation of the braking process. 

t i on  (2.14) i s  equivalent t o  the  two real equations: 

4ua- 

mua- 

Fence, the  phase trajectoxy i s  the l i n e  of intersect ion of the  ruled heli-  

coidal surface with a surface of revolution, i.e., a cer ta in  spa t ia l  spiral-like 

curve of variable radius and variable pi tch twisting about the  axis w,. 

A t  suf f ic ien t ly  large values of w ~ ,  a t  Xw: 9 1, we can simplify the expres- 

sion f o r  the angular velocity (D as a function of ug . 
t o t i c  expansion fo r  the Fresnel integrals  

Substi tuting t h e  asymp- 

i n t o  eq.(2.ll+) and omitting the unessential constants, we obtain 

0 -  im ) exp (- i im?)  = const . ( % t C - - 4  

(3.7) 

Multiplying both s ides  of eq.(3.8) by t h e i r  conjugate quant i t ies ,  we f ind 

( 3 . 9 )  
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A s  w e  see, a t  suff ic ient ly  large values of w,, the  projection of the  phase 

trajectory onto the plane @,w, w i l l  consist of a sequence of a rcs  similar t o  

a rc s  of  circles.  

Thus,  the  derived solution f o r  t he  coordinates y and for the  pulses Pk 

enables us, in principle, t o  calculate t h e  nonsingular optimal deceleration con- 

d i t ions  of a symnetric body. 

able from the boundary conditions of the problem, enter these integrals. There- 

fore, for  a specific calculation of the braking process it is  more convenient t o  

examine it i n  the opposite direction, assuming, f o r  example, t ha t  a t  the  ini t ia l  

ins tan t  w, = e ,  = w, = 0. Then, having assigned t h e  values P and cy we can 

calculate the  en t i re  course of the  phase t ra jectory up to a cer ta in  point W,(T), 

w,(T), w,(T) .  

a point i n  the phase space as close as desired to the  given point. 

tha t ,  f r o m  the f0-a f o r  the  ini t ia l  value of the nodulus pzo 

K ~ x e ~ c r ,  tm Im-hown constants P and a, determin- 

/730 

After this, changing t'ne i n i t i 2 1  m h e s  of P and CY we can "hitTt 

We note 

follows the  condition 

(3.10) 

(3.11) 

Depending on the selection of  the sign of the quantity pro we obtain two 

phase t ra jec tor ies ,  symmetric with respect to the plane W, = 0. 

ness, we can set pto > 0 and, conseqJently, Q~ > 0, A,, > 0. The signs of the 

controll ing moments m,, and rn-, depending upon the value of the  angle cyo, are 

determined f r o m  eqs. (3.2). 

For definit ive- 

Figure 1 shows one of t h e  phase t ra jec tor ies  of the  problem under con- 

s iderat ion plotted by means of the described method, i.e., actually for  the  pro- 
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cess of acceleration of a body f r o m  zero in i t ia l  velocity up t o  some  f i n a l  value. 

By vir tue of the  revers ib i l i ty  of t h e  solution of the var ia t ional  problem, this 

trajectory will  be optimal a l so  f o r  t he  process of braking a body from t h i s  

point w,(T), w7(T), w,(T) in the  phase space up t o  the point w, = w 7  = w, = 0. 

- 

Consumption of Mass 4. Braking a t  Mxurmrm . .  

Assuming t ha t  the  controlling moments Q are created by a j e t  engine with 

a constant exhaust velocity and t h a t  the engines, creating the moments m, and 

m,, are  identical ,  w e  w i l l  t a k e  as the functional of the problem t h e  following 

in tegra l  

where M i s  a quantity proportional t o  the mass consumed for  deceleration and p 

and v are posit ive coefficients. Thus, in t h i s  problem w e  must supplement the  

system of equations of motion (1.1) by an additional equation fo r  the function M 

M ' = p p % ( + p I ~ , I + v l m * l  (4.2) 

and seek the conditions f o r  switching the controlling moments ~ll, such tha t  M(T) 

w i l l  be minimal. However, eq.(4.2) is  inconvenient i n  t h a t  the  m d u l i  of func- 

10 
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t ions  with al ternat ing signs enter  in to  it. 

assume that the  values of 14 can be only posit ive o r  equal t o  zero 

To eliminate this drawback, w e  will 

and w i l l  assign t h e i r  sign in eqs.(1.1) by introducing additional equations of 

ulr, Y ~ Q ~ C ?  ent i re  set of permissible values i s  limited only by two points uk = +lo 

Then, in place of the systems (1.1) and (4.2) we will have m 

It i s  obvious that the d i f fe ren t ia l  equations and thus also the  integrals  

for  the functions p x  and pt remain as before. The integral determining pt will 

vary, since the form of the function H w i l l  vary where we. must evidently intro- 

duce the  new q a n t i t y  pm which i s  conjugate to  the variable M. It follows from 

the  formulation of the problem tha t  the quantity Pn will be a un i t  constant 

equal t o  -1 during the en t i r e  braking process. 

t ion,  we can write H in the following form: 

With consideration of this func- 

F r o m  the  condition of the maximum of this function with respect t o  the con- 

t r o l s  mk and uk it follows t ha t  

As before, pr i s  determined d i rec t ly  from t he  in tegra l  (4.5) which, with 

consideration of eq.(4.6), can be written i n  the following manner: 

11 



m, (T - p) + my (y - p) + rn, (!+! - v) = o,p; .  (4.7) 

Since the  left-hand side of this equation in optimal conditions cannot be 

negative, then 

It, follows from eq. (4.7) tha t ,  a t  the end of the  braking process when w, = 

= u), = w, = 0, the left-hand side of the equation should also be q u s l  +& zemi  

Le., the conditions 

(4.9) 

should be satisfied.  

I n  cases i n  which, over a certain section, the condition 

\ P k \  'k 1 (4.10) 

i s  satisfied, singular control conditions may arise a t  which the magnitude of 

t he  controlling moments may assume not only t h e i r  own boundary values, 

It i s  evident t ha t  a singular regime with respect t o  the  transverse mo- /732 

ments m, and m, can occur only simultaneously fo r  both and only when the longi- 

tudinal  velocity w, is completely eliminated, since otherwise, according to 

eq. (2./+), the functions px and p, cannot become constants satisfying the condi- 

t i o n  (.!+.lo). 

singular condition is characterized by the  conditions u), f 0, \p,l = vC. 

With respect t o  the longitudinal mment m,, the occurrence of a 

It 

follows f r o m  this t ha t  p i  5 0, Le., e i the r  u), = w, = 0 o r  pxW, = pp, .  

The first case corresponds t o  t h e  regime of pure rotat ion of a body about 

a longitudinal a x i s  where, of course, the  l a w  of variation of the moment m, does 

not a f f ec t  the overal l  consumption of t he  working medium. 

The second case, as i s  readily demonstrated, can occur only i n  passive 

zones with respect t o  the transverse moment, i.e., i n  the sections where m = 0. 

We note tha t  i n  the general case in passive zones where m = 0, the derivative pi 

12 
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, .  

assumes a constant value [this i s  easi ly  demonstrated by means of eqs. (2.5) and 

(2.11)] so t h a t  the function pz varies l inear ly  i n  these time intervals.  

It follows from the form of the integral  (4.7) that ,  during the en t i r e  

braking process, the function p, varies  monotonically, continuously increasing 

o r  continuously decreasing depending upon the  sign of the i n i t i a l  velocity wzo. 

Assuming that, a t  the in i t ia l  instant., We h c ~ c  

eq.(b.8), ptG > 0 and the function p, will increase. 

> Q, then, according t o  

In t h i s  case, it is  neces- 

sary t h a t  the condition pto < -vC be sa t i s f ied  since otherwise, by v i r tue  of 

eqs.(l+.L) and (l+.6), the  angular velocity w would begin t o  increase continuously 

and no deceleration will be accomplished. 

Analogously, i f  wz0 e 0, then the  ini t ia l  value of pro should be greater 

than vC. 

can conclude t h a t  the  sign of the function p, should always be opposite t o  the 

Since the above statements remain val id  far any i z s t an t  of time, we 

sign of w,, Le., 

u, = - s f P o ,  - 
Thus, deceleration of longitudinal angular velocity takes place by switch- 

ing t h e  moment m, in a direct ion opposite t o  the direct ion of w,. If the  magni- 

tude of this moment remains constant a t  a l l  times, then the duration of i t s  

action T will be detexmined by the formula 

and 

The law of var ia t ion of w, w i l l  then be l i nea r  so that, assuming wz0 7 0 

fo r  definit iveness,  we will have 

I n  view of this, u n t i l  t < T, Le.,  u n t i l  the  velocity w, vanishes, we can 

13 
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a s  before use w, i n  place of the time t as  the  independent variable. 

i n  the in te rva l  0 S t S T the  in tegra ls  (2.8) and (2.l4) remain valid,  and we 

need only introduce the equations of uk before the corresponding moments q. 

Thus, /732 

In 

this case, of course, it must be remembered tha t ,  unlike the  pmblem'of the 

speed of response, passive zones appear in the  equations of m, and m,, Le., 

sections i n  which mk = 0 (k = x, yj. 

The posit ion of these zones i s  determined by the condition 

Fromthe requirement t ha t  these conditions a t  the f i n a l  instant  of time 

must be sa t i s f ied  simultaneously, the amplitude P will be expressed by the in- 

equality 

(4.16) 

5. Deceleration of Transverse Velocity 

The par t icular  case of this problem is  the problem of eliminating preces- 

sional motions of a body, i.e., of removing the transverse components of the 

Fig. 2 

angular velocity of a symnetric body w, and wt  a t  m, E 0. 

the  form of the solution w i l l  d i f f e r  since W, = W d  = const; consequently, i n  

I n  these conditions, 



place of the system (1.1) we w i l l  have a system of l i nea r  equations with con- 

s tant  coefficients. Designating 

P (5.1) 
eo, = 

f o r  the complex angular velocity w and t h e  function p = px + ip, we will have 

the  following integrals  

Hence, the phase trajectory i n  Vne plane w,wy w i l l  be a Curve comprised of 

U n l i k e  the  speed-of-response problem, here arcs  with a center a rcs  of circles.  

a t  the or igin of the  coordinates corresponding t o  the zones where m, = my = 0 

w i l l  also become a pa r t  of these curves. 

To p lo t  the  phase t ra jectory of t h e  q s t em we w i l l  f i r s t  construct a dia- 

gram in the  form of a c i r c l e  of radius P and a square with a side &A, as shown 

in Fig.2. 

this c i rc le ,  w i l l  osculate the zones corresponding to different  values of the  

controls m, and my and, obviously, the hatched segments w i l l  correspond to sec- 

Then the  terminus of the vector p = Pe'(Pt + "\ upon moving along 

I t ions  of inclusion of the moments m, and m, while the unhatched segments cor- 

respond t o  passive zones, i.e., t o  sections q = 5 = 0. 

the width of the passive zone y, j u s t  a s  t h e  width of each of the act ive zones 6 ,  

depends on the  value of the  r a t i o  pA/P and w i l l  obey the  following relations: 

',:e eas i ly  see tha t  

By means of this diagram, we can construct a family of phase t ra jec tor ies  

proceeding from the or igin of the coordinates. 

section should be active,  for  example rn, f 0, and f o r  definit iveness we w i l l  as- 

sume t h a t  COS a. > pA/P 50 t ha t  u, = 1, 

It is  evident t h a t  the first 

Then, according t o  eq. (5.2) the  equation of the i n i t i a l  segment of the 
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phase curve w i l l  become 

A s  soon as the complex vector p in Fig.2 turns  through an angle 1/2 6 ,  Le . ,  as 

soon as the  complex vector w - i(m,/pA) in the phase plane ro t a t e s  re la t ive  

t o  tine point a1 t 'mUgh an a g l e  112 d - CY, the  mrrment. m, w i l l  be excluded and, 

f u r t h e m r e ,  the phase curve w i l l  be an a rc  of c i r c l e  described from the o r i g i n  

of the  coordinates t o  the central  angle y. 

cluded, the  phase t ra jectory w i l l  pass along the  a rc  of c i r c l e  described from 

the  center a t  the point aa(w, = 0, w, = -,/PA), and the length of the a rc  obvi- 

ously will make the angle 6. After this, the moment m, i s  excluded and the tra- 

jectory becomes a segment of the a rc  y described fron the  c r i g h  of the  coordi- 

/734 

Then, the moment my will be in- 

nates. 

Fig. 3 

Continuing this process we can show that the family of phase t r a j ec to r i e s  

i n  the  axes w,w, will  have the form shown i n  Fig.3a. 

phase plane i s  divided in to  eight sectors by switching l i n e s  made up of a rcs  of 

c i r c l e s ,  the length of each of which i n  angular measure i s  equal t o  6. Four of 

these sectors  correspond to t h e  active zones of braking and the four others t o  

the  passive zones, where motion by ine r t i a  takes place. 

As we see, the en t i r e  

W e  note tha t  t he  width 
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o f  the passive zone y i n  this problem, where control of longitudinal velocity is 

not provided for,  can be a rb i t ra ry  Kithin the limits 0 S y 5 1/2n. The width of 

this zone a f f ec t s  only t h e  duration of the braking process and does not a f f ec t  

the consumption of mass. 0, the passive zones 

disappear and t h e  pat tern of the phase plane takes the form shown in Fig.%. It 

should be mentioned tinat the  yrittezl; of the phzse trajectories actual ly  does not 

d i f f e r  here from t h a t  of the phase t ra jec tor ies  in the analogous problem of the 

speed of response, with the exception of the rotat ion of the en t i r e  phase plane 

through an angle l/lrn. 

I n  the l imiting case, where y 

Thus, a comparison of the conditions optimal with respect t o  speed of re- 

sponse and consumption of  the mass of the working medium clear ly  shows that the 

qua l i ta t ive  difference i s  that, i n  t i s e l a t t e r ,  the t m s v e r s e  controlling mo- 

ments m, and m, do not a c t  sh i l taneous ly  but a r e  cut in al ternately;  further- 

more, the longitudinal moment m, does not reverse during the deceleration and 

alwags has a sign opposite t o  tha t  of the longitudinal component of the angular 

veloci ty  w,. 

In  conclusion, it should be pointed out t h a t  the prac t ica l  real izat ion of 

the examined optimal conditions i s  extremely d i f f i c u l t  i n  view of the complex 

character of the switching surfaces located i n  the phase space of the system. 

However, the solutions do permit finding the maximum possible speed of response 

o r  economy of operation of a control system and thus t o  evaluate, f r o m t h i s  

viewpoint, the qual i ty  of an a rb i t r a r i l y  selected nonoptimum control regime. 
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